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Outline

quantum chaos on a compact manifold: structure of the high-frequency
eigenstates

• quantum ergodicity
• a lower bound on the metric entropy (with N.Anantharaman)

open quantum chaos: quantum scattering
• quantum resonances, in the semiclassical regime
• hyperbolic trapped sets (Axiom A)
• "gap" in the resonance spectrum, in terms of a topological pressure

(with M.Zworski)

In both problems, crucial role played by the hyperbolic dispersion of
wavepackets.
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Structure of chaotic eigenmodes

Quantum (unique?) ergodicity
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Spectral geometry: spatial structure of vibration modes

Quantum particle propagating on (X, g) compact manifold, possibly with
(piecewise smooth) boundary:
• Schrödinger equation ih∂tψ(t, x) = Phψ(t, x), with Ph

def
= −h2∆X .

Linear =⇒ relevant to consider the spectrum of the Laplacian: discrete
spectrum (∆X + k2

n)ψn = 0 (⇐⇒ (−h2
n∆X − 1)ψn = 0)

What can we say about the spectrum {kn} and eigenmodes {ψn} in
the high-frequency limit kn →∞? (⇐⇒ semiclassical limit hn → 0)

Local Weyl’s law: for any test function f ∈ C∞(X),∑
kn≤K

∫
X

f(x) |ψn(x)|2 dx = CdK
d

∫
X

f(x) dx+ o(Kd),

On average, the eigenstates become equidistributed on X.

How about individual eigenstates?

Semiclassical analysis makes the connection with the underlying
Hamiltonian dynamics: (broken) geodesic flow Φt : S∗X → S∗X.
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Chaotic dynamics: Quantum Ergodicity

Quantum Chaos: preferably consider (X, g) s.t. the geodesic flow Φt has
chaotic features.

Theorem (Quant. Ergod. [SCHNIRELMAN, ZELDITCH, COLIN DE VERDIÈRE. . . ])
If Φt is ergodic on S∗X w.r.t. the Liouville measure, almost all the
eigenmodes ψn become asymptotically equidistributed on X:

〈ψnj , fψnj 〉L2
j→∞→ 1

Vol(X)

∫
X

f(x) dx along subsequence of density 1.

Qu: Can there be exceptional modes, for instance localizing along certain
periodic geodesics?

[LINDENSTRAUSS’06]: X arithmetic surface of const. negative curvature and
(ψn) “Hecke" eigenmodes: Quantum Unique Ergodicity.

[HASSELL’10]: for X a generic stadium billiard, ∃ bouncing-ball modes
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Localization of high-frequency eigenstates: Semiclassical measures

To connect with classical dynamics, lift the localization to phase space T ∗X.

F (x, ξ) ∈ C∞c (T ∗X) 7→ F (x, hD), pseudodiff. operator on X.
Allows to test the localization of ψn(x) both in position space and in
Fourier space at the scale h−1 (microlocalization).

Ex: the local plane wave ψh(x) = a(x) eiξ0·x/h is microlocalized on the
Lagrangian plane Λξ0 = {(x, ξ0), x ∈ supp a}.
Adapt "Planck’s constant" h to ψn: (−hn2∆− 1)ψn = 0, so that ψn is
microlocalized on S∗X = {(x, ξ) : |ξ| = 1}.

Extracting subsequences, 〈ψnj , F (x, hnjD)ψnj 〉
j→∞→

∫
T∗X F dµsc,

where µsc is called a semiclassical measure.

Each µsc is a probability measure supported on S∗X, and is invariant
through Φt. It represents the asymptotic phase space distribution of the
subsequence (ψnj ).

=⇒ JOB FOR DYN. SYS.: describe the possible invariant measures of Φt.
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Anosov flows: Entropy of semiclassical measures

Choose (X, g) with Anosov geodesic flow, e.g. with negative sectional
curvature. Important quantity: unstable Jacobian Jut (ρ) = | det(dΦt �Euρ )|
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Attempt to characterize the localization properties of eigenstates: study the
metric entropy of the semiclassical measure µsc.

partition of unity on S∗X: 1lS∗X =
∑J
j=1 πj , πj = 1lVj .

Refined partitions: πα0···αn−1 = παn−1 ◦ Φn−1 × · · ·πα1 ◦ Φ1 × πα0 .

HKS(µ) = limn→∞
1
n
Hn(µ), where Hn(µ) =

∑
|α|=n−µ(πα) logµ(πα).

Indicator of localization: µ very localized (e.g. µ = δγ) =⇒ H(µ) small.

If µ(πα) ≤ Ce−β|α| when |α| → ∞, then H(µ) ≥ β.

=⇒ can we show that µsc(πα) ≤ Ce−β|α|?
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Quantizing the partition. Hyperbolic dispersion estimate

Smoothen and quantize πj into Πj = πj(x, hD), to form a quantum partition
of unity: Id =

∑J
j=1 Πj .

Πj = microlocal quasiprojector on the phase space region Vj .

Refine the quantum partition using Schrödinger evolution U t = e−itPh/h:

Πα
def
= U−n+1Παn−1 · · ·U

1Πα1U
1Πα0

evolution of observables: U−ta(x, hD)U t = a ◦ Φt(x, hD) + Ot(h)
(Egorov theorem)

product of observables: a(x, hD)b(x, hD) = (ab)(x, hD) + O(h)

=⇒ Πα = πα(x, hD) + On(h).

	 correspondence breaks down when Vα becomes "quantum", that is for
n > TE = log 1/h

λmax
the Ehrenfest time.

⊕ beyond TE , exponential decay, governed by the unstable Jacobian along
α-trajectories:

‖Πα‖L2→L2 ≤ min
(
1, Ch−(d−1)/2Ju(α)−1/2) Hyperbolic dispersion estimate.
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Lower bounds on the entropy

Formally, the weight of ψh inside Vα is ‖Παψh‖2, which decays exponentially
when n > TE :

‖Παψh‖2 ≤ h−(d−1) e−nΛmin

⊕ lower bound on quantum entropy Hn(ψh) ≥ nΛmin − (d− 1)| log h−1|.

	 for times n� TE , impossible to relate Hn(µsc) with Hn(ψh).

We obtain a nontrivial bound by taking n = 2TE :

Theorem ([ANANTHARAMAN’06,ANANTHARAMAN-N’07])
If Φt is Anosov, any semiclassical measure µsc satisfies

H(µsc) ≥
∫
S∗X

log Ju(ρ) dµsc(ρ)− (d− 1)λmax

2
.

If X is 2-dim. with nonpositive curv., H(µsc) ≥ 1
2

∫
S∗X log Ju(ρ) dµsc(ρ)

[RIVIÈRE’10]

• (Ruelle: H(µ) ≤
∫
S∗X log Ju(ρ) dµ(ρ), with equality iff µ = µLiouv).

• ∃ toy Anosov models (quantum maps) for which this lower bound is
reached, µsc = 1

2
δγ + 1

2
µLiouv [FAURE-N-DEBIÈVRE’03].

nonnen
Comment on Text
only in negative curvature
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Semiclassical propagation of Lagrangian states
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A Lagrangian state ψh(x) = a(x)ei
ϕ(x)
h is microlocalized on the Lagrangian

leaf Λϕ = {(x, dϕ(x)), x ∈ supp a} ⊂ T ∗X.
Ex: local plane wave a(x)ei

η·x
h microlocalized on Λη = {(x, η), x ∈ supp a}.

Lagrangian states enjoy a simple semiclassical evolution:
U t(a eiϕ/h) = ate

iϕt/h + O(h), with Λϕt = Φt(Λϕ).
the amplitude at is transported like a half-density:

at(xt) = a(x0)| det(∂xt/∂x0)|−1/2, where (xt, dϕt(xt)) = Φt(x0, dϕ(x0))

applying a pseudodiff F (x, hD) only modifies the symbol:

[F (x, hD) aeiϕ/h](x) = F (x, dϕ(x)) a(x)eiϕ(x)/h + O(h)
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Proof of Hyperbolic dispersive estimate
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We want to show: ‖Παn−1 · · ·U1Πα1U
1Πα0ψ‖L2 . h−

d−1
2 Ju(α)‖ψ‖L2

Any state Πα0ψ can be "Fourier" expanded into
Πα0ψ(x) = h−

d−1
2
∫
I
dη a(x)ei

η·x
h ψ̃(η)

propagate individual Lagrangian states: U1(a eiη·x/h) = a1e
iϕ1/h, with

Λϕ1 = Φ1(Λη).

the quasiprojector Π1 cuts off the amplitude (norm reduction)

propagate a1e
iϕ1/h into a2e

iϕ2/h, then truncate, etc.

Hyperbolicity =⇒ ΛϕN aligns along Wu, and aN ∼ a1J
u(α1 · · ·αN )−1/2.

linearity =⇒ ‖Παψ‖ . h
d−1
2 Ju(α1 · · ·αN )−1/2‖ψ‖.
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Open quantum chaos:

Chaotic scattering systems
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Classical & Quantum scattering

Assume now that (X, g) is of infinite volume (and "nice" near infinity).

(X, g) smooth, Euclidean near infinity.

X = Rd\ smooth compact obstacles.

X = Γ\H2 with Γ < PSL(2,R) convex co-compact.

• Geodesic flow Φt : S∗X → S∗X may be complicated in the "interaction
region".

• Quantum particle still described by the Schrödinger equation

ψ(t) = U tψ(0), U t = e−itPh/h, Ph = −h2∆X .
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Quantum scattering ; resonances replace eigenvalues

Given ψ0 ∈ L2
comp(X), we want to understand the long time evolution of

ψ(t) = U tψ0 (dispersion of the waves towards infinity).

X of infinite volume⇒ SpecPh absolutely continuous on [c0h
2,∞).

Is that all?
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Experimental spectra often feature peaks, called resonances.
Mathematically: discrete, complex, generalized eigenvalues of Ph.
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Resonances in quantum scattering

E0
Ch

jz (h)

Ph selfadjoint =⇒ (Ph − z)−1 : L2 → L2 bounded for {Im z > 0} ("physical
sheet"), becomes unbounded as Im z ↘ 0.

However, for any cutoff χ ∈ C∞c (X), the truncated resolvent χ(Ph − z)−1χ
can be meromorphically continued from {Im z > 0} to {Im z < 0}.
Poles of finite multiplicities {zj(h)}: resonances of Ph.

Each zj(h)↔ metastable state ψj(x) (6∈ L2), with lifetime τj = h
2| Im zj |

.
; long-living resonance if Im zj(h) = O(h) (physically meaningful).

Can we give a sense to an expansion like:

ψ(t) =
∑
zj

cj e
−itzj/h ψj + rem. ? (ψj not in L2!)
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Distribution of long living resonances

Ch
E0

gh

Resonances replace eigenvalues ; spectral questions:

fixing E > 0, what do we know about the long-living resonances near E?
How close are they from the real axis?
How many are they?

Applications to time evolution: correlation functions

〈ϕ, e−itP (h)/hψ0〉L2 =
∑
zj

〈ϕ,ψj〉 e−itzj/h + rem., ϕ, ψ0 ∈ C∞c .

Semiclassical regime→ how does the classical dynamics influence this
distribution?
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Distribution of resonances – Trapped set

most trajectories are transient, spend a finite time in the interaction
region.

there may exist trapped trajectories.

trapped set ΓE = Γ+
E ∩Γ−E , Γ±E = {ρ ∈ p−1(E), Φt(ρ) 6→ ∞, t→ ∓∞}.

ΓE compact, flow-invariant.

Intuition: the distribution of the {zj(h)} near E depends on Φt �ΓE .

Ex. 1: ΓE = ∅. =⇒ fast dispersion, NO long-living resonance
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ΓE a single hyperbolic orbit

The distribution of {zj(h)} near E depends on the classical trapped set ΓE .

Ex. 2: d = 2, ΓE = 1 hyperbolic periodic orbit γE .

Can use a Quantum Birkhoff Normal Form for Ph near γE .

h
0 E

λz< −h   /2Im

C

=⇒ resonances on a deformed half-lattice
[IKAWA’85,GÉRARD-SJÖSTRAND’87. . . ]

The resonance gap is determined by λE , the Lyapunov exponent of γE .
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ΓE a chaotic fractal set

Ex. 3: ΓE a fractal hyperbolic repeller, with Φt�ΓE Axiom A flow (unif. hyperb.)

Examples:

(X, g) of negative curvature near ΓE

N ≥ 3 convex obstacles in Rd with nonshadowing property

X = Γ \H2, with Γ convex co-compact.
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ΓE “thin” enough: fast dispersion and resonance gap

Theorem ([IKAWA’88, GASPARD-RICE’89, N-ZWORSKI’09])
Assume ΓE is hyperbolic, and thin enough so that P(−1/2 log Ju; ΓE) < 0.
Then, in the limit h→ 0, all resonances in D(E,Ch) satisfy

Im zj(h)

h
≤ P(−1/2 log Ju) + o(1)h→0 "resonance gap"

X

Ch

E0

gh

⊕ hyperbolic dispersion =⇒ wavepackets “leak away” from ΓE .
	 interferences between wavepackets on different trajectories may reduce
the global leakage from ΓE .
⊕ if ΓE is thin, interferences cannot completely suppress the leakage =⇒
lifetimes τj(h) are uniformly bounded.
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Topological pressure at 1/2
P

top

0 11/2
s

cl−γ

(−s log J  )u

H

P(− log Ju) = −γcl < 0,
but P(−1/2 log Ju) can take both signs.

If dimX = 2:
P(−1/2 log Ju) < 0⇐⇒ dimH ΓE < 2

Proof of thm (sketch): Want to control the decay of ΠΓU
nψ as n→∞.

Quantum partition of unity near ΓE : ΠΓ =
∑
j Πj .

Decompose Πα0ψ(x) = h−
d−1
2
∫
I
dη a(x)ei

η·x
h ψ̃(η)

ΠΓU
n(a ei

η·x
h ) ≈

∑
|α|=n

Uα(a ei
η·x
h ) =

∑
|α|=n

aα e
iϕα
h , Uα = U1Παn−1 · · ·U

1 .

Apply the triangle inequality (allows interferences):

‖ΠΓU
n(a ei

η·x
h )‖ .

∑
|α|=n

‖Uα(a ei
η·x
h )‖ ≈

∑
|α|=n

Ju(α)−1/2 . enP(−1/2 log Ju)

Sum over ψη ; extra factor h−
d−1
2 ≤ enε if we take n� log h−1.
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How sharp is the bound P(−1/2 log Ju)? (cf. next 2 talks)

Are there partial cancellations in
∑

α∼ΓE
aα e

iϕα
h ?

Need to control:
• the relative positions of the nearby leaves Λϕα

• the relative phases between the ϕα.

Most precise results obtained for X = Γ\H2:
• the laminations are smooth.
• resonances of ∆X correspond to zeros of the Selberg zeta function

[NAUD’05] adapts Dolgopyat’s method ; resonance gap increased by ε1.

Conjecture [JAKOBSON-NAUD’11]: at high frequency, Im zj
h
≤ − γcl

2
+ o(1).

[DYATLOV-ZAHL’15, FAURE-WEICH’15, TSUJII’16]: quantitative predictions for
ε1, using better informations on the structure of ΓE .

[FAURE-WEICH’15, TSUJII’16]: improvement of gap for classical (R-P)
resonances in partially expanding maps / semiflows.

[PETKOV-STOYANOV’10] adapt Dolgopyat’s method to study the
N -obstacles system on R2.



Quantum ergodicity Hyperbolic dispersion Chaotic scattering Chaotic trapped set Resonance gap Quantum ergodicity

Thank you for your attention
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Counting resonances: fractal Weyl law

h
E0

j
z

C

Theorem ([SJÖSTRAND’90, SJÖSTRAND-ZWORSKI’07, N-SJ-ZW’11])
Assume ΓE is a hyperbolic repeller. Then,

∀C > 0, # {Res(Ph) ∩D(E,C h)} = O(h−µE ),

where µE = dim(ΓE)−1
2

(Minkowski dimension).

Intuition:
1. the metastable states are microlocalized in a

√
h-nbhd of KE (uncertainty

principle)
2. Each “quantum box” (phase space volume ∼ hd can accomodate at most
one quantum state.
3. ; count the number of “quantum boxes” in this nbhd.

Conjecture: for C large enough this upper bound is sharp [LIN-ZWORSKI].
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Fractal Weyl law?
Conjecture: # {Res(P (h)) ∩D(E,C h)} � h−µE

• X = Γ \Hn+1: Selberg trace formula→ non-optimal lower bound

#{Res(P (h)) ∩D(E,C h)} & 1 [GUILLOPÉ-ZWORSKI’99, PERRY’03]

• numerics for various systems seem to confirm this fractal Weyl law
[LIN’01, LU-SRIDHAR-ZWORSKI’03, GUILLOPÉ-LIN-ZWORSKI’04].

Quasi-2D "open" microwave
table, desymmetrized version
of the 5-disk scatterer.

Experimental studies for the 5-disk scatterer [KUHL et al.’12].
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Two examples of normal hyperbolicity

"Bath" coordinates
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"Reaction" coordinates

• Chemical reaction dynamics [GOUSSEV et al.’10]. K = Normally Hyperbolic
Invariant Manifold. Near a saddle-center-center fixed point the flow on K is
approximately integrable⇒ Quantum Normal Form:

P (h) = E0 +
λ

2
(y
h

i
∂y +

h

i
∂y y) +

d∑
k=2

ωk
2

(
(
h

i
∂xk )2 + x2

k

)
+ smaller

; resonances z`,nk ≈ E0 − ihλ(`+ 1/2) +
∑d
k=2 hωk(nk + 1/2)

• General relativity: wave propagation on Kerr-de Sitter metric (rotating black
hole, positive cosmological constant).
The system is also separable⇒ explicit resonances (called quasi-normal
modes in this setting) [DYATLOV’10].
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