Quantum chaos and the thermodynamical formalism

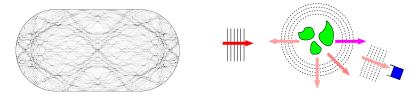
Stéphane Nonnenmacher (Orsay)

Fractal Geometry, Hyperbolic Dynamics and Thermodynamical Formalism, ICERM, March 7-11, 2016

Outline

- quantum chaos on a compact manifold: structure of the high-frequency eigenstates
 - quantum ergodicity
 - a lower bound on the metric entropy (with N.Anantharaman)
- open quantum chaos: quantum scattering
 - quantum resonances, in the semiclassical regime
 - hyperbolic trapped sets (Axiom A)
 - "gap" in the resonance spectrum, in terms of a topological pressure (with M.Zworski)

In both problems, crucial role played by the hyperbolic dispersion of wavepackets.



Quantum ergodicity

Structure of chaotic eigenmodes

Quantum (unique?) ergodicity

Spectral geometry: spatial structure of vibration modes

Quantum particle propagating on (X,g) compact manifold, possibly with (piecewise smooth) boundary:

• Schrödinger equation $ih\partial_t\psi(t,x) = P_h\psi(t,x)$, with $P_h \stackrel{\text{def}}{=} -h^2\Delta_X$.

Linear \implies relevant to consider the **spectrum** of the Laplacian: discrete spectrum $(\Delta_X + k_n^2)\psi_n = 0$ ($\iff (-h_n^2\Delta_X - 1)\psi_n = 0$)

What can we say about the spectrum $\{k_n\}$ and eigenmodes $\{\psi_n\}$ in the high-frequency limit $k_n \to \infty$? (\iff semiclassical limit $h_n \to 0$)

Local Weyl's law: for any test function $f \in C^{\infty}(X)$,

$$\sum_{k_n \le K} \int_X f(x) |\psi_n(x)|^2 \, dx = C_d \, K^d \, \int_X f(x) \, dx + o(K^d),$$

On average, the eigenstates become equidistributed on X.

How about individual eigenstates?

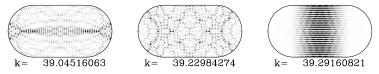
Semiclassical analysis makes the connection with the underlying Hamiltonian dynamics: (broken) geodesic flow $\Phi^t : S^*X \to S^*X$.

Chaotic dynamics: Quantum Ergodicity

Quantum Chaos: preferably consider (X, g) s.t. the geodesic flow Φ^t has chaotic features.

Theorem (Quant. Ergod. [SCHNIRELMAN, ZELDITCH, COLIN DE VERDIÈRE...]) If Φ^t is ergodic on S^*X w.r.t. the Liouville measure, almost all the eigenmodes ψ_n become asymptotically equidistributed on X:

$$\langle \psi_{n_j}, f\psi_{n_j} \rangle_{L^2} \xrightarrow{j \to \infty} \frac{1}{\operatorname{Vol}(X)} \int_X f(x) \, dx$$
 along subsequence of density 1



<u>Qu</u>: Can there be exceptional modes, for instance localizing along certain periodic geodesics?

[LINDENSTRAUSS'06]: X arithmetic surface of const. negative curvature and (ψ_n) "Hecke" eigenmodes: Quantum Unique Ergodicity.

[HASSELL'10]: for X a generic stadium billiard, \exists bouncing-ball modes

Quantum ergodicity

Localization of high-frequency eigenstates: Semiclassical measures

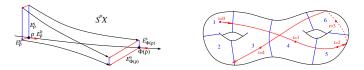
To connect with classical dynamics, lift the localization to phase space T^*X .

- $F(x,\xi) \in C_c^{\infty}(T^*X) \mapsto F(x,hD)$, pseudodiff. operator on X. Allows to test the localization of $\psi_n(x)$ both in position space and in Fourier space at the scale h^{-1} (microlocalization).
- Ex: the local plane wave $\psi_h(x) = a(x) e^{i\xi_0 \cdot x/h}$ is microlocalized on the Lagrangian plane $\Lambda_{\xi_0} = \{(x, \xi_0), x \in \operatorname{supp} a\}.$
- Adapt "Planck's constant" h to ψ_n: (-h_n²Δ − 1)ψ_n = 0, so that ψ_n is microlocalized on S^{*}X = {(x, ξ) : |ξ| = 1}.
- Extracting subsequences, $\langle \psi_{n_j}, F(x, h_{n_j}D)\psi_{n_j} \rangle \xrightarrow{j \to \infty} \int_{T^*X} F \, d\mu_{sc}$, where μ_{sc} is called a semiclassical measure.
- Each μ_{sc} is a probability measure supported on S^*X , and is invariant through Φ^t . It represents the asymptotic phase space distribution of the subsequence (ψ_{n_i}) .

 \implies JOB FOR DYN. SYS.: describe the possible invariant measures of Φ^t .

Anosov flows: Entropy of semiclassical measures

Choose (X, g) with Anosov geodesic flow, e.g. with negative sectional curvature. Important quantity: unstable Jacobian $J_t^u(\rho) = |\det(d\Phi^t \upharpoonright_{E_o^u})|$



Attempt to characterize the localization properties of eigenstates: study the metric entropy of the semiclassical measure μ_{sc} .

- partition of unity on S^*X : $\mathbb{1}_{S^*X} = \sum_{j=1}^J \pi_j, \pi_j = \mathbb{1}_{V_j}$.
- Refined partitions: $\pi_{\alpha_0\cdots\alpha_{n-1}} = \pi_{\alpha_{n-1}} \circ \Phi^{n-1} \times \cdots \pi_{\alpha_1} \circ \Phi^1 \times \pi_{\alpha_0}$.
- $H_{KS}(\mu) = \lim_{n \to \infty} \frac{1}{n} H_n(\mu)$, where $H_n(\mu) = \sum_{|\alpha|=n} -\mu(\pi_{\alpha}) \log \mu(\pi_{\alpha})$. Indicator of localization: μ very localized (e.g. $\mu = \delta_{\gamma} \implies H(\mu)$ small.
- If $\mu(\pi_{\alpha}) \leq Ce^{-\beta|\alpha|}$ when $|\alpha| \to \infty$, then $H(\mu) \geq \beta$.
- \implies can we show that $\mu_{sc}(\pi_{\alpha}) \leq Ce^{-\beta|\alpha|}$?

Quantizing the partition. Hyperbolic dispersion estimate

Smoothen and quantize π_j into $\Pi_j = \pi_j(x, hD)$, to form a quantum partition of unity: $Id = \sum_{j=1}^{J} \Pi_j$.

 Π_j = microlocal quasiprojector on the phase space region V_j .

Refine the quantum partition using Schrödinger evolution $U^t = e^{-itP_h/h}$:

$$\Pi_{\boldsymbol{\alpha}} \stackrel{\text{def}}{=} U^{-n+1} \Pi_{\alpha_{n-1}} \cdots U^1 \Pi_{\alpha_1} U^1 \Pi_{\alpha_0}$$

- evolution of observables: $U^{-t}a(x,hD)U^t = a \circ \Phi^t(x,hD) + O_t(h)$ (Egorov theorem)
- product of observables: a(x,hD)b(x,hD) = (ab)(x,hD) + O(h)

 $\implies \Pi_{\alpha} = \pi_{\alpha}(x, hD) + \mathcal{O}_n(h).$

 \ominus correspondence breaks down when V_{α} becomes "quantum", that is for $n > T_E = \frac{\log 1/h}{\lambda_{\max}}$ the Ehrenfest time.

 \oplus beyond $T_E,$ exponential decay, governed by the unstable Jacobian along α -trajectories:

 $\|\Pi_{\alpha}\|_{L^2 \to L^2} \le \min\left(1, Ch^{-(d-1)/2} J^u(\alpha)^{-1/2}\right)$ Hyperbolic dispersion estimate.

Lower bounds on the entropy

Formally, the weight of ψ_h inside V_{α} is $\|\Pi_{\alpha}\psi_h\|^2$, which decays exponentially when $n > T_E$:

$$\left\|\Pi_{\boldsymbol{\alpha}}\psi_{h}\right\|^{2} \leq h^{-(d-1)} e^{-n\Lambda_{\min}}$$

 \oplus lower bound on quantum entropy $H_n(\psi_h) \ge n\Lambda_{\min} - (d-1)|\log h^{-1}|$.

 \ominus for times $n \gg T_E$, impossible to relate $H_n(\mu_{sc})$ with $H_n(\psi_h)$.

We obtain a nontrivial bound by taking $n = 2T_E$:

Theorem ([ANANTHARAMAN'06,ANANTHARAMAN-N'07]) If Φ^t is Anosov, any semiclassical measure μ_{sc} satisfies

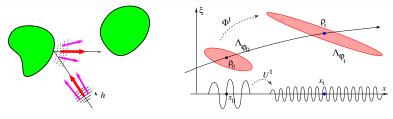
$$H(\mu_{sc}) \ge \int_{S^*X} \log J^u(\rho) \, d\mu_{sc}(\rho) - \frac{(d-1)\lambda_{\max}}{2}.$$

If X is 2-dim. with nonpositive curv., $H(\mu_{sc}) \geq \frac{1}{2} \int_{S^*X} \log J^u(\rho) \, d\mu_{sc}(\rho)$ [Rivière'10]

• (Ruelle: $H(\mu) \leq \int_{S^*X} \log J^u(\rho) \, d\mu(\rho)$, with equality iff $\mu = \mu_{Liouv}$).

• \exists toy Anosov models (quantum maps) for which this lower bound is reached, $\mu_{sc} = \frac{1}{2}\delta_{\gamma} + \frac{1}{2}\mu_{Liouv}$ [FAURE-N-DEBIÈVRE'03].

Semiclassical propagation of Lagrangian states



A Lagrangian state $\psi_h(x) = a(x)e^{i\frac{\varphi(x)}{h}}$ is microlocalized on the Lagrangian leaf $\Lambda_{\varphi} = \{(x, d\varphi(x)), x \in \sup_{x \in T} p a\} \subset T^*X.$

Ex: local plane wave $a(x)e^{i\frac{\eta \cdot x}{h}}$ microlocalized on $\Lambda_{\eta} = \{(x, \eta), x \in \operatorname{supp} a\}$.

Lagrangian states enjoy a simple semiclassical evolution:

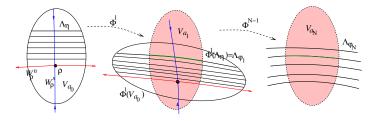
- $U^t(a e^{i\varphi/h}) = a_t e^{i\varphi_t/h} + \mathcal{O}(h)$, with $\Lambda_{\varphi_t} = \Phi^t(\Lambda_{\varphi})$.
- the amplitude a_t is transported like a half-density:

 $a_t(x_t) = a(x_0) |\det(\partial x_t/\partial x_0)|^{-1/2}$, where $(x_t, d\varphi_t(x_t)) = \Phi^t(x_0, d\varphi(x_0))$

• applying a pseudodiff F(x, hD) only modifies the symbol:

$$[F(x,hD) a e^{i\varphi/h}](x) = F(x,d\varphi(x)) a(x) e^{i\varphi(x)/h} + \mathcal{O}(h)$$

Proof of Hyperbolic dispersive estimate



We want to show: $\|\Pi_{\alpha_{n-1}}\cdots U^1\Pi_{\alpha_1}U^1\Pi_{\alpha_0}\psi\|_{L^2} \lesssim h^{-\frac{d-1}{2}} J^u(\boldsymbol{\alpha})\|\psi\|_{L^2}$

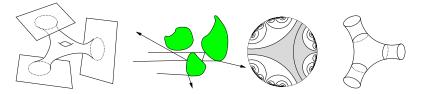
- Any state $\Pi_{\alpha_0} \psi$ can be "Fourier" expanded into $\Pi_{\alpha_0} \psi(x) = h^{-\frac{d-1}{2}} \int_I d\eta \, a(x) e^{i \frac{\eta \cdot x}{h}} \tilde{\psi}(\eta)$
- propagate individual Lagrangian states: $U^1(a e^{i\eta \cdot x/h}) = a_1 e^{i\varphi_1/h}$, with $\Lambda_{\varphi_1} = \Phi^1(\Lambda_{\eta})$.
- the quasiprojector Π_1 cuts off the amplitude (norm reduction)
- propagate $a_1 e^{i\varphi_1/h}$ into $a_2 e^{i\varphi_2/h}$, then truncate, etc.
- Hyperbolicity $\Longrightarrow \Lambda_{\varphi_N}$ aligns along W^u , and $a_N \sim a_1 J^u (\alpha_1 \cdots \alpha_N)^{-1/2}$.
- linearity $\Longrightarrow \|\Pi_{\alpha}\psi\| \lesssim h^{\frac{d-1}{2}} J^u(\alpha_1 \cdots \alpha_N)^{-1/2} \|\psi\|.$

Quantum ergodicity

Open quantum chaos:

Chaotic scattering systems

Classical & Quantum scattering



Assume now that (X, g) is of infinite volume (and "nice" near infinity).

- (X,g) smooth, Euclidean near infinity.
- $X = \mathbb{R}^d \setminus$ smooth compact obstacles.

• $X = \Gamma \setminus \mathbb{H}^2$ with $\Gamma < PSL(2, \mathbb{R})$ convex co-compact.

• Geodesic flow $\Phi^t: S^*X \to S^*X$ may be complicated in the "interaction region".

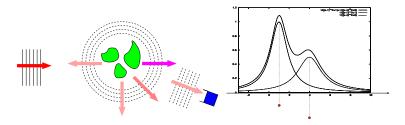
• Quantum particle still described by the Schrödinger equation

$$\psi(t) = U^t \psi(0), \qquad U^t = e^{-itP_h/h}, \qquad P_h = -h^2 \Delta_X.$$

Quantum scattering \rightsquigarrow resonances replace eigenvalues

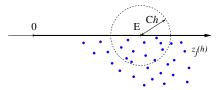
Given $\psi_0 \in L^2_{comp}(X)$, we want to understand the long time evolution of $\psi(t) = U^t \psi_0$ (dispersion of the waves towards infinity).

X of infinite volume \Rightarrow Spec P_h absolutely continuous on $[c_0h^2, \infty)$. Is that all?



Experimental spectra often feature **peaks**, called resonances. Mathematically: discrete, complex, generalized eigenvalues of P_h .

Resonances in quantum scattering



 P_h selfadjoint $\implies (P_h - z)^{-1} : L^2 \to L^2$ bounded for $\{ \text{Im } z > 0 \}$ ("physical sheet"), becomes unbounded as $\text{Im } z \searrow 0$.

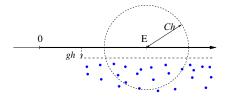
However, for any cutoff $\chi \in C_c^{\infty}(X)$, the truncated resolvent $\chi(P_h - z)^{-1}\chi$ can be meromorphically continued from $\{\operatorname{Im} z > 0\}$ to $\{\operatorname{Im} z < 0\}$. Poles of finite multiplicities $\{z_j(h)\}$: resonances of P_h .

Each $z_j(h) \leftrightarrow$ metastable state $\psi_j(x) \ (\notin L^2)$, with lifetime $\tau_j = \frac{h}{2|\operatorname{Im} z_j|}$. \rightsquigarrow long-living resonance if $\operatorname{Im} z_j(h) = \mathbb{O}(h)$ (physically meaningful).

Can we give a sense to an expansion like:

$$\psi(t) = \sum_{z_j} c_j \, e^{-itz_j/h} \, \psi_j + rem. \ ? \qquad (\psi_j \text{ not in } L^2!)$$

Distribution of long living resonances



Resonances replace eigenvalues ~> spectral questions:

- fixing E > 0, what do we know about the long-living resonances near E?
 How close are they from the real axis?
 How many are they?
- Applications to time evolution: correlation functions

$$\langle \varphi, e^{-itP(h)/h}\psi_0\rangle_{L^2} = \sum_{z_j} \langle \varphi, \psi_j\rangle \, e^{-itz_j/h} + rem., \qquad \varphi, \psi_0 \in C_c^\infty.$$

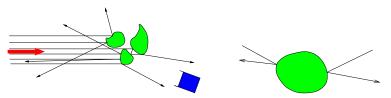
Semiclassical regime \rightarrow how does the classical dynamics influence this distribution?

Distribution of resonances – Trapped set

- most trajectories are transient, spend a finite time in the interaction region.
- there may exist trapped trajectories.

trapped set $\Gamma_E = \Gamma_E^+ \cap \Gamma_E^-$, $\Gamma_E^\pm = \{\rho \in p^{-1}(E), \Phi^t(\rho) \not\to \infty, t \to \mp \infty\}.$ Γ_E compact, flow-invariant.

Intuition: the distribution of the $\{z_j(h)\}$ near *E* depends on $\Phi^t \upharpoonright_{\Gamma_E}$.

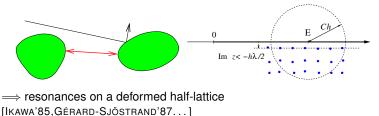


Ex. 1: $\Gamma_E = \emptyset$. \Longrightarrow fast dispersion, NO long-living resonance

Γ_E a single hyperbolic orbit

The distribution of $\{z_j(h)\}$ near *E* depends on the classical trapped set Γ_E . Ex. 2: d = 2, $\Gamma_E = 1$ hyperbolic periodic orbit γ_E .

Can use a Quantum Birkhoff Normal Form for P_h near γ_E .



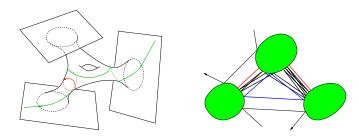
The **resonance gap** is determined by λ_E , the Lyapunov exponent of γ_E .

Γ_E a chaotic fractal set

Ex. 3: Γ_E a fractal hyperbolic repeller, with $\Phi^t_{|\Gamma_E}$ Axiom A flow (unif. hyperb.)

Examples:

- (X,g) of negative curvature near Γ_E
- $N \geq 3$ convex obstacles in \mathbb{R}^d with nonshadowing property
- $X = \Gamma \setminus \mathbb{H}^2$, with Γ convex co-compact.

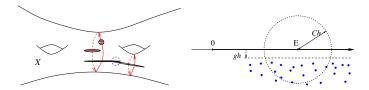


$\Gamma_{\it E}$ "thin" enough: fast dispersion and resonance gap

Theorem ([Ikawa'88, Gaspard-Rice'89, N-Zworski'09])

Assume Γ_E is hyperbolic, and thin enough so that $\mathfrak{P}(-1/2 \log J^u; \Gamma_E) < 0$. Then, in the limit $h \to 0$, all resonances in D(E, Ch) satisfy

$$rac{\mathrm{Im}\, z_j(h)}{h} \leq \mathfrak{P}(-1/2\log J^u) + o(1)_{h o 0}$$
 "resonance gap"

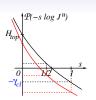


 \oplus hyperbolic dispersion \Longrightarrow wavepackets "leak away" from Γ_E .

 \ominus interferences between wavepackets on different trajectories may reduce the global leakage from Γ_E .

 \oplus if Γ_E is thin, interferences cannot completely suppress the leakage \implies lifetimes $\tau_i(h)$ are uniformly bounded.

Quantum ergodicity



Topological pressure at 1/2

$$\begin{split} & \mathcal{P}(-\log J^u) = -\gamma_{cl} < 0, \\ & \text{but } \mathcal{P}(-1/2\log J^u) \text{ can take both signs.} \\ & \text{If } \dim X = 2; \\ & \mathcal{P}(-1/2\log J^u) < 0 \Longleftrightarrow \dim_H \Gamma_E < 2 \end{split}$$

Proof of thm (sketch): Want to control the decay of $\Pi_{\Gamma} U^n \psi$ as $n \to \infty$. Quantum partition of unity near Γ_E : $\Pi_{\Gamma} = \sum_{j} \Pi_j$.

• Decompose $\Pi_{\alpha_0}\psi(x) = h^{-\frac{d-1}{2}}\int_I d\eta \, a(x)e^{i\frac{\eta\cdot x}{h}}\,\tilde{\psi}(\eta)$

$$\Pi_{\Gamma} U^n(a e^{i\frac{\eta \cdot x}{\hbar}}) \approx \sum_{|\alpha|=n} U_{\alpha}(a e^{i\frac{\eta \cdot x}{\hbar}}) = \sum_{|\alpha|=n} a_{\alpha} e^{i\frac{\varphi_{\alpha}}{\hbar}}, \quad U_{\alpha} = U^1 \Pi_{\alpha_{n-1}} \cdots U^1$$

• Apply the triangle inequality (allows interferences):

$$\|\Pi_{\Gamma} U^n(a e^{i\frac{\eta \cdot x}{h}})\| \lesssim \sum_{|\boldsymbol{\alpha}|=n} \|U_{\boldsymbol{\alpha}}(a e^{i\frac{\eta \cdot x}{h}})\| \approx \sum_{|\boldsymbol{\alpha}|=n} J^u(\boldsymbol{\alpha})^{-1/2} \lesssim e^{n\mathcal{P}(-1/2\log J^u)}$$

• Sum over $\psi_\eta \rightsquigarrow$ extra factor $h^{-\frac{d-1}{2}} \leq e^{n\epsilon}$ if we take $n \gg \log h^{-1}$.

How sharp is the bound $\mathfrak{P}(-1/2\log J^u)$ (cf. next 2 talks)

Are there partial cancellations in $\sum_{\alpha \sim \Gamma_E} a_{\alpha} e^{i \frac{\varphi_{\alpha}}{\hbar}}$?

Need to control:

- the relative positions of the nearby leaves $\Lambda_{\varphi_{\alpha}}$
- the relative phases between the φ_{α} .

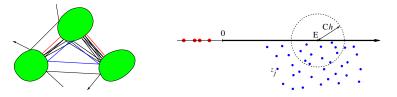
Most precise results obtained for $X = \Gamma \setminus \mathbb{H}^2$:

- the laminations are smooth.
- \bullet resonances of Δ_{X} correspond to zeros of the Selberg zeta function
 - [NAUD'05] adapts Dolgopyat's method \sim resonance gap increased by ϵ_1 .
 - Conjecture [JAKOBSON-NAUD'11]: at high frequency, $\frac{\text{Im } z_j}{h} \leq -\frac{\gamma_{cl}}{2} + o(1)$.
 - [DYATLOV-ZAHL'15, FAURE-WEICH'15, TSUJII'16]: quantitative predictions for ϵ_1 , using better informations on the structure of Γ_E .
 - [FAURE-WEICH'15, TSUJII'16]: improvement of gap for *classical* (R-P) resonances in partially expanding maps / semiflows.
 - [PETKOV-STOYANOV'10] adapt Dolgopyat's method to study the N-obstacles system on \mathbb{R}^2 .

Quantum ergodicity

Thank you for your attention

Counting resonances: fractal Weyl law



Theorem ([SJÖSTRAND'90, SJÖSTRAND-ZWORSKI'07, N-SJ-ZW'11]) Assume Γ_E is a hyperbolic repeller. Then,

 $\forall C > 0, \qquad \# \{ \operatorname{Res}(P_h) \cap D(E, Ch) \} = \mathcal{O}(h^{-\mu_E}),$

where $\mu_E = \frac{\dim(\Gamma_E) - 1}{2}$ (Minkowski dimension).

Intuition:

1. the metastable states are microlocalized in a \sqrt{h} -nbhd of K_E (uncertainty principle)

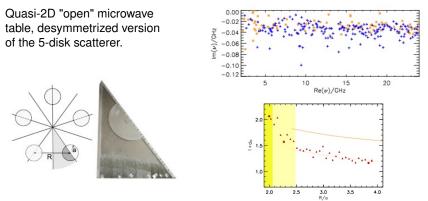
2. Each "quantum box" (phase space volume $\sim h^d$ can accomodate at most one quantum state.

3. \sim count the number of "quantum boxes" in this nbhd.

Conjecture: for *C* large enough this upper bound is *sharp* [LIN-ZWORSKI].

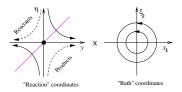
Fractal Weyl law? Conjecture: $\# \{ \operatorname{Res}(P(h)) \cap D(E, Ch) \} \asymp h^{-\mu_E}$

- $X = \Gamma \setminus \mathbb{H}^{n+1}$: Selberg trace formula \rightarrow non-optimal lower bound
 - $\#\{\operatorname{Res}(P(h))\cap D(E,C\,h)\}\gtrsim 1 \qquad \text{[Guillopé-Zworski'99, Perry'03]}$
- numerics for various systems seem to confirm this fractal Weyl law [LIN'01, LU-SRIDHAR-ZWORSKI'03, GUILLOPÉ-LIN-ZWORSKI'04].



Experimental studies for the 5-disk scatterer [KUHL et al.'12].

Two examples of normal hyperbolicity



• Chemical reaction dynamics [GOUSSEV *et al.*'10]. K = Normally Hyperbolic Invariant Manifold. Near a saddle-center-center fixed point the flow on K is approximately *integrable* \Rightarrow Quantum Normal Form:

$$P(h) = E_0 + \frac{\lambda}{2} \left(y \frac{h}{i} \partial_y + \frac{h}{i} \partial_y y \right) + \sum_{k=2}^d \frac{\omega_k}{2} \left(\left(\frac{h}{i} \partial_{x_k} \right)^2 + x_k^2 \right) + smaller$$

 \sim resonances $z_{\ell,n_k} \approx E_0 - ih\lambda(\ell + 1/2) + \sum_{k=2}^d h\omega_k(n_k + 1/2)$

• General relativity: wave propagation on Kerr-de Sitter metric (rotating black hole, positive cosmological constant).

The system is also separable \Rightarrow explicit resonances (called **quasi-normal modes** in this setting) [DYATLOV'10].